
jupyter_kernel_mgmt Documentation
Release 0.6.0.dev0

Jupyter Development Team

Jan 29, 2020

APPLICATION DEVELOPERS

1 Kernel Finder 3
1.1 Finding kernels . 3
1.2 Launching kernels . 5

2 Kernel Manager 7

3 Kernel Client 9

4 Kernel Restarter 11

5 Standalone Usage 13

6 Use with Jupyter Server 15

7 Kernel Providers 17
7.1 Creating a kernel provider . 17
7.2 Finding kernel types . 18
7.3 Included kernel providers . 19
7.4 Included kernel launchers . 19
7.5 Glossary . 19

8 Kernel Management APIs 21
8.1 High Level API . 21
8.2 Kernel Finder . 22
8.3 Kernel Provider . 22
8.4 Kernel Launchers . 23
8.5 Kernel Manager . 24
8.6 Kernel Client . 26
8.7 Kernel Restarter . 31

9 Changes in Jupyter Kernel Mgmt 35
9.1 0.5.1 . 35
9.2 0.5.0 . 35
9.3 0.4.0 . 35
9.4 0.3.0 . 36
9.5 0.2.0 . 36
9.6 0.1.1 . 36

10 Indices and tables 37

Python Module Index 39

i

Index 41

ii

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

This package provides the Python API for starting, managing and communicating with Jupyter kernels. For informa-
tion on messaging with Jupyter kernels, please refer to the Jupyter Protocol documentation.

Note: This is a new interface under development, and may still change. Not all Jupyter applications use this yet. See
the jupyter_client docs for the established way of discovering and managing kernels.

APPLICATION DEVELOPERS 1

https://jupyter-protocol.readthedocs.io/en/latest/index.html
https://pexpect.readthedocs.io/en/latest/

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

2 APPLICATION DEVELOPERS

CHAPTER

ONE

KERNEL FINDER

The jupyter_kernel_mgmt package provides a means of discovering kernel types that are available for use. This
is accomplished using the KernelFinder class.

KernelFinder instances are created in one of two ways.

1. The most common way is to call KernelFinder’s class method KernelFinder.from_entrypoints().
This loads all registered kernel providers.

2. You can also provide a list of kernel provider instances to KernelFinder’s constructor. This loads only those
instances provided.

Once an instance of KernelFinder has been created, kernels can be discovered and launched via KernelFinder’s
instance methods, find_kernels() and launch(), respectively.

1.1 Finding kernels

Available kernel types are discovered using KernelFinder’s KernelFinder.find_kernels() method. This
method is a generator that walks the set of loaded kernel providers calling each of their KernelProvider.
find_kernels() methods yielding each entry.

Each kernel type has an ID (e.g. spec/python3) and a dictionary containing information to help a program or a
user select an appropriate kernel. Different providers may include different metadata in this dictionary.

1.1.1 Kernel Specifications

The main built-in kernel provider, KernelSpecProvider, looks for kernels described by files in certain specific
folders. Each kernel is described by one directory, and the name of the directory is used in its kernel type ID. These
kernel spec directories may be in a number of locations:

Type Unix Windows
Sys-
tem

/usr/share/jupyter/kernels
/usr/local/share/jupyter/kernels

%PROGRAMDATA%\
jupyter\kernels

User ~/.local/share/jupyter/kernels (Linux)
~/Library/Jupyter/kernels (Mac)

%APPDATA%\jupyter\
kernels

Env {sys.prefix}/share/jupyter/kernels

The user location takes priority over the system locations, and the case of the names is ignored, so selecting kernels
works the same way whether or not the filesystem is case sensitive.

Since kernel names, and their provider ids, show up in URLs and other places, a kernelspec is required to have a simple
name, only containing ASCII letters, ASCII numbers, and the simple separators: - hyphen, . period, _ underscore.

3

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

Other locations may also be searched if the JUPYTER_PATH environment variable is set.

For IPython kernels, three types of files are presently used: kernel.json, kernel.js, and logo image files.
However, different Kernel Providers can support other files and directories within the kernel directory or may not even
use a directory for their kernel discovery model. That said, for kernels prior to Kernel Providers or those discovered
by instances of class KernelSpecProvider, the most important file is kernel.json. This file consists of a JSON-
serialized dictionary that adheres to the kernel specification format.

For example, the kernel.json file for the IPython kernel looks like this:

{
"argv": ["python3", "-m", "IPython.kernel",

"-f", "{connection_file}"],
"display_name": "Python 3",
"language": "python"

}

Kernel Specification Format

The information contained in each entry returned from a Kernel Provider’s find_kernels() method consists of a
dictionary containing the following keys and values:

• display_name: The kernel’s name as it should be displayed in the UI. Unlike the kernel name used in the API,
this can contain arbitrary unicode characters. This value should be provided by all kernel providers.

• language: The name of the language of the kernel. When loading notebooks, if no matching kernelspec key
(may differ across machines) is found, a kernel with a matching language will be used. This allows a notebook
written on any Python or Julia kernel to be properly associated with the user’s Python or Julia kernel, even if
they aren’t listed under the same name as the author’s. This value should be provided by all kernel providers.

• metadata (optional): A dictionary of additional attributes about this kernel. Metadata added here should be
namespaced for the tool reading and writing that metadata.

Kernelspec-based providers obtain this information from a kernel.json file located in a directory pertaining to the
kernel’s name. Other fields in the kernel.json file include information used to launch and manage the kernel. As a
result, you’ll also find the following fields in kernel.json files:

• argv: (optional): A list of command line arguments used to start the kernel. For instances of class
KernelSpecProvider the text {connection_file} in any argument will be replaced with the path
to the connection file. However, subclasses of KernelSpecProvider may choose to provide different sub-
stitutions, especially if they don’t use a connection file.

• interrupt_mode (optional): May be either signal or message and specifies how a client is supposed to
interrupt cell execution on this kernel, either by sending an interrupt signal via the operating system’s sig-
nalling facilities (e.g. SIGINT on POSIX systems), or by sending an interrupt_request message on the
control channel (see kernel interrupt). If this is not specified signal mode will be used.

• env (optional): A dictionary of environment variables to set for the kernel. These will be added to the current
environment variables before the kernel is started.

However, whether a provider exposes information used during their kernel’s launch is entirely up to the provider.

4 Chapter 1. Kernel Finder

https://jupyter-protocol.readthedocs.io/en/latest/messaging.html#msging-interrupt

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

1.1.2 IPython kernel provider

A second built-in kernel provider, IPykernelProvider, identifies if ipykernel is importable by the same
Python the frontend is running on. If so, it provides exactly one kernel type, pyimport/kernel, which runs the
IPython kernel in that same Python environment.

This may be functionally a duplicate of a kernel type discovered through an installed kernelspec.

1.2 Launching kernels

Launching kernels works similarly to their discovery. To launch a previously discovered kernel, the kernel’s fully
qualified kernel type is provided to KernelFinder’s launch() method.

Note: A fully qualified kernel type includes a prefix of the kernel’s provider id followed by a forward slash (‘/’).
For example, the python3 kernel as provided by the KernelSpecProvider would have a fully qualified kernel
type of spec/python3.

The application is responsible for ensuring the name passed to KernelFinder.launch() is prefixed with a
provider id. For backwards compatibility with existing kernelspecs, a prefix of spec/ is recommended in such cases
so as to associate it with the KernelSpecProvider.

KernelFinder’s launch method then locates the provider and calls the specific kernel provider’s launch() method.

KernelFinder.launch(name, cwd=None, launch_params=None) takes two additional (and optional)
arguments.

cwd (optional) specifies the current working directory relative to the notebook. Use of this value is up to the provider,
as some kinds of kernels may not see the same filesystem as the process launching them.

launch_params (optional) specifies a dictionary of provider-specific name/value pairs that can can be used during
the kernel’s launch. What parameters are used can also be specified in the form of JSON schema embedded in the
provider’s kernel specification returned from its find_kernels() method. The application retrieving the kernel’s
information and invoking its subsequent launch, is responsible for providing appropriately relevant values.

1.2.1 Using launched kernels

A 2-tuple of connection information and the provider’s kernel manager instance are returned from KernelFinder’s
launch method.

Although the KernelManager instance allows an application to manage a kernel’s lifecycle, it does not provide a means
of communicating with the kernel. To communicate with the kernel, an instance of KernelClient is required.

If the application would like to perform automatic restart operations (where the application detects the kernel is no
longer running and issues a restart request) the application should establish a KernelRestarter instance.

1.2. Launching kernels 5

https://jupyter-protocol.readthedocs.io/en/latest/kernels.html#connection-files

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

6 Chapter 1. Kernel Finder

CHAPTER

TWO

KERNEL MANAGER

The kernel manager is the primary interface through which an application controls a kernel’s lifecycle upon its suc-
cessful launch. Implemented by the provider, it exposes well-known methods to determine if the kernel is alive, as
well as its interruption and shutdown, among other things. Applications like Jupyter Notebook invoke a majority of
these methods indirectly via the REST API upon a user’s request, while others are invoked from within the application
itself.

7

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

8 Chapter 2. Kernel Manager

CHAPTER

THREE

KERNEL CLIENT

To communicate with the kernel, an instance of KernelClient is required. This class instance takes its parameters from
the application and formats them according to the Jupyter message protocol.

9

https://jupyter-protocol.readthedocs.io/en/latest/messaging.html

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

10 Chapter 3. Kernel Client

CHAPTER

FOUR

KERNEL RESTARTER

Applications that wish to perform automatic restart operations (where the application detects the kernel is no longer
running and issues a restart request) use a kernel restarter. This instance is associated to the appropriate kernel
manager instance to accomplish the restart functionality.

11

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

12 Chapter 4. Kernel Restarter

CHAPTER

FIVE

STANDALONE USAGE

The aim of the Kernel Management is to be integrated in larger applications such as the Jupyter Server.

Although, it can be used as a standalone module to, for example, launch a Kernel Finder from the command line and
get a list of Kernel Specifications

python -m jupyter_kernel_mgmt.discovery

Similarly to jupyter_client, the Kernel Management can be used in different flavors and use cases. We are looking to
your contributions to enrich the example use cases. You can get inspiration from the test_client.py source code.

PS: The existing separated jupyter_client can not be used in combination with the Kernel Management. The Kernel-
Client code to use should be the one shipped by Kernel Management, not by jupyter_client.

13

https://github.com/jupyter/jupyter_client
https://github.com/takluyver/jupyter_kernel_mgmt/blob/master/jupyter_kernel_mgmt/tests/test_client.py
https://github.com/jupyter/jupyter_client
https://github.com/jupyter/jupyter_client

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

14 Chapter 5. Standalone Usage

CHAPTER

SIX

USE WITH JUPYTER SERVER

This page describes the way Jupyter Server uses the Kernel Management module.

On the Jupyter Server side, WEB handlers receive the javascript requests and are responsible for the communication
with the Kernel Manager and Providers.

The MainKernelSpecHandler in services/kernelsspecs/handlers is reponsible to find the available Kernel Specs.

The other Handlers located in services/kernels/handlers are reponsible to launch and pass the message to the ZeroMQ
channels:

• KernelHandler - accessible on endpoint /api/kernels

• MainKernelHandler - accessible on endpoint /api/kernels/<kernel_id>

• KernelActionHandler - accessible on endpoint /api/kernels/<kernel_id>/{interrupt,restart}

• ZMQChannelsHandler - accessible on endpoint /api/kernels/<kernel_id>/channels

Jupyter Server runs with a single ServerApp that initializes each of the handlers with services related to the Kernels:

• A kernel_manager - the default manager is MappingKernelManager provided by jupyter_server.

• A kernel_finder - is imported from the jupyter_kernel_mgmt library.

• A session_manager - uses a kernel_manager MappingKernelManager.

A single instance of MappingKernelManager is shared across all other objects (singleton pattern). The MappingKer-
nelManager instance has a KernelFinder field.

The kernel_manager we are referring to in Jupyter Server should not be confused with the kernel_manager of the
Kernel Manager it self. To avoid confusion, we will name the Servers’s one mapping_kernel_manager in the next
sections.

Notably, the ZMQChannelsHandler has access to the kernel’s client interface via its kernel_client property.

In order to be found by a kernel_finder, Kernel Providers need to register them selves via the entrypoint mechanism.

The included kernel providers, KernelSpecProvider and IPykernelProvider, register by default their en-
trypoints.

entrypoints:
jupyter_kernel_mgmt.kernel_type_providers' : [
'spec = jupyter_kernel_mgmt.discovery:KernelSpecProvider',
'pyimport = jupyter_kernel_mgmt.discovery:IPykernelProvider',

]

The system administrator can install additional providers. In that case, those external providers can register their own
entypoints, see e.g kubernetes_kernel_provider, yarn_kernel_provider. . .

15

https://github.com/jupyter/jupyter_server
https://github.com/gateway-experiments/kubernetes_kernel_provider
https://github.com/gateway-experiments/yarn_kernel_provider

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

The interactions sequence between Jupyter Server and the Kernel Management is sketched here. Please note that this
diagram just gives an idea of the interactions and is not aimed to reflect an exhaustive list of object constructs nor
method calls. . .

See also:

High Level API

16 Chapter 6. Use with Jupyter Server

CHAPTER

SEVEN

KERNEL PROVIDERS

7.1 Creating a kernel provider

By writing a kernel provider, you can extend how Jupyter applications discover and start kernels. For example, you
could find kernels in an environment system like conda, or kernels on remote systems which you can access.

To write a kernel provider, subclass KernelProviderBase, giving your provider an ID and overriding two meth-
ods.

class MyKernelProvider

id
A short string identifying this provider. Cannot contain forward slash (/).

find_kernels()
Get the available kernel types this provider knows about. Return an iterable of 2-tuples: (name, attributes).
name is a short string identifying the kernel type. attributes is a dictionary with information to allow
selecting a kernel. This may also contain metadata describing other information pertaining to the kernel’s
launch - parameters, environment, etc.

launch(name, cwd=None, launch_params=None)
Launches the kernel and returns a 2-tuple: (connection_info, kernel_manager). connection_info is a dic-
tionary consisting of the connection information pertaining to the launched kernel. kernel_manager is a
KernelManager instance.

name is a name returned from find_kernels().

cwd is a string indicating the (optional) working directory in which the kernel should be launched.

launch_params is a dictionary of name/value pairs to be used by the provider and/or passed to the kernel
as parameters.

For example, imagine we want to tell Jupyter about kernels for a new language called oblong:

oblong_provider.py
import asyncio
from jupyter_kernel_mgmt.discovery import KernelProviderBase
from jupyter_kernel_mgmt import KernelManager
from shutil import which

class OblongKernelProvider(KernelProviderBase):
id = 'oblong'

@asyncio.coroutine
def find_kernels(self):

(continues on next page)

17

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

(continued from previous page)

if not which('oblong-kernel'):
return # Check it's available

Two variants - for a real kernel, these could be something like
different conda environments.
yield 'standard', {

'display_name': 'Oblong (standard)',
'language': {'name': 'oblong'},
'argv': ['oblong-kernel'],

}
yield 'rounded', {

'display_name': 'Oblong (rounded)',
'language': {'name': 'oblong'},
'argv': ['oblong-kernel'],

}

async def launch(self, name, cwd=None, launch_params=None):
if name == 'standard':

return await my_launch_method(cwd=cwd, launch_params=launch_params,
kernel_cmd=['oblong-kernel'],
extra_env={'ROUNDED': '0'})

elif name == 'rounded':
return await my_launch_method(cwd=cwd, launch_params=launch_params,

kernel_cmd=['oblong-kernel'],
extra_env={'ROUNDED': '1'})

else:
raise ValueError("Unknown kernel %s" % name)

You would then register this with an entry point. In your setup.py, put something like this:

setup(...
entry_points = {
'jupyter_kernel_mgmt.kernel_type_providers' : [

The name before the '=' should match the id attribute
'oblong = oblong_provider:OblongKernelProvider',

]
})

7.2 Finding kernel types

To find and start kernels in client code, use KernelFinder. This uses multiple kernel providers to find available
kernels. Like a kernel provider, it has methods find_kernels and launch. The kernel names it works with have
the provider ID as a prefix, e.g. oblong/rounded (from the example above).

from jupyter_kernel_mgmt.discovery import KernelFinder
kf = KernelFinder.from_entrypoints()

Find available kernel types
for name, attributes in kf.find_kernels():

print(name, ':', attributes['display_name'])
oblong/standard : Oblong (standard)
oblong/rounded : Oblong(rounded)
...

(continues on next page)

18 Chapter 7. Kernel Providers

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

(continued from previous page)

Start a kernel by name
connect_info, manager = await kf.launch('oblong/standard')

client = IOLoopKernelClient(connect_info, manager=manager)
try:

await asyncio.wait_for(client.wait_for_ready(), timeout=startup_timeout)
except RuntimeError:

await client.shutdown_or_terminate()
await client.close()
await manager.kill()

Use `manager` for lifecycle management, `client` for communication

7.3 Included kernel providers

jupyter_kernel_mgmt includes two kernel providers in its distribution.

1. KernelSpecProvider handles the discovery and launch of most existing kernelspec-based kernels that exist
today.

2. IPykernelProvider handles the discover and launch of any IPython kernel that is located in the executing
python’s interpreter. For example, if the application is running in a virtual Python environment, this provider iden-
tifies if any IPython kernel is local to that environment and may not be identified by the path algorithm used by
KernelSpecProvider.

7.4 Included kernel launchers

The kernel provider is responsible for launching the kernel and returning the connection information and kernel man-
ager instance. Typically, a provider will implement a launcher to perform this action.

For those providers launching their kernels using the subprocess module’s Popen class, jupyter_kernel_mgmt
includes two kernel launcher implementations in its distribution.

1. SubprocessKernelLauncher launches kernels using the ‘tcp’ transport.

2. SubprocessIPCKernelLauncher launchers kernels using the ‘ipc’ transport (using filesystem sockets).

Both launchers return the resulting connection information and an instance of KernelManager, which is subse-
quently used to manage the rest of the kernel’s lifecycle.

7.5 Glossary

Kernel instance A running kernel, a process which can accept ZMQ connections from frontends. Its state includes a
namespace and an execution counter.

Kernel type The software to run a kernel instance, along with the context in which a kernel starts. One kernel type
allows starting multiple, initially similar kernel instances. For instance, one kernel type may be associated with
one conda environment containing ipykernel. The same kernel software in another environment would be
a different kernel type. Another software package for a kernel, such as IRkernel, would also be a different
kernel type.

7.3. Included kernel providers 19

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

Kernel provider A Python class to discover kernel types and allow a client to start instances of those kernel types.
For instance, one kernel provider might find conda environments containing ipykernel and allow starting
kernel instances in these environments. While another kernel provider might enable the ability to launch kernels
across a Kubernetes cluster.

Provider Id A simple string ([a-z,0-9,_,-,.]) that identifies the provider. Each kernel name returned from the
provider’s find_kernels() method will be prefixed by the provider id followed by a ‘/’ separator.

20 Chapter 7. Kernel Providers

CHAPTER

EIGHT

KERNEL MANAGEMENT APIS

8.1 High Level API

These functions are convenient interfaces to start and interact with Jupyter kernels.

8.1.1 Async interface

These functions are meant to be called from an asyncio event loop.

class jupyter_kernel_mgmt.run_kernel_async(name, **kwargs)
Context manager to run a kernel by kernel type name.

Gives an async client:

async with run_kernel_blocking("pyimport/kernel") as kc:
await kc.execute("a = 6 * 7")

async jupyter_kernel_mgmt.start_kernel_async(name, cwd=None, launch_params=None,
finder=None)

Start a kernel by kernel type name, return (manager, async client)

8.1.2 Blocking interface

jupyter_kernel_mgmt.run_kernel_blocking(name, **kwargs)
Context manager to run a kernel by kernel type name.

Gives a blocking client:

with run_kernel_blocking("pyimport/kernel") as kc:
kc.execute_interactive("print(6 * 7)")

jupyter_kernel_mgmt.start_kernel_blocking(name, *, cwd=None, launch_params=None,
finder=None, startup_timeout=60)

Start a kernel by kernel type name, return (manager, blocking client)

21

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

8.2 Kernel Finder

The Kernel Finder API is used by applications wishing to discover, launch, and manage Jupyter kernels.
KernelFinder is not meant to be subclassed. To make it discover additional kernels, see Kernel Providers.

class jupyter_kernel_mgmt.discovery.KernelFinder(providers)
Manages a collection of kernel providers to find available kernel types. providers should be a list of kernel
provider instances.

find_kernels()
Iterate over available kernel types. Yields 2-tuples of (prefixed_name, attributes)

classmethod from_entrypoints()
Load all kernel providers advertised by entry points.

Kernel providers should use the “jupyter_kernel_mgmt.kernel_type_providers” entry point group.

Returns an instance of KernelFinder.

async launch(name, cwd=None, launch_params=None)
Launch a kernel of a given kernel type using asyncio.

8.3 Kernel Provider

The Kernel Provider API is what a third-party would implement to introduce a form of kernel management that might
differ from the more common KernelSpecProvider kernel. For example, a kernel provider might want to launch
(and manage) kernels across a Kubernetes cluster. They would then implement a provider that performs the necessary
action for launch and provide a KernelManager instance that can perform the appropriate actions to control the kernel’s
lifecycle.

See also:

Kernel Providers

class jupyter_kernel_mgmt.discovery.KernelProviderBase

abstract find_kernels()
Return an iterator of (kernel_name, kernel_info_dict) tuples.

abstract async launch(name, cwd=None, launch_params=None)
Launch a kernel, returns a 2-tuple of (connection_info, kernel_manager).

name will be one of the kernel names produced by find_kernels() and known to this provider.

cwd (optional) a string that specifies the path to the current directory of the notebook as conveyed by the
client. Its interpretation is provider-specific.

launch_params (optional) a dictionary consisting of the launch parameters used to launch the kernel. Its
interpretation is provider-specific.

This method launches and manages the kernel in an asynchronous (non-blocking) manner.

load_config(config=None)
Loads the configuration corresponding to the hosting application. This method is called during Ker-
nelFinder initialization prior to any other methods. The Kernel provider is responsible for interpreting
the config parameter (when present).

config (optional) an instance of Config consisting of the hosting application’s configurable traitlets.

22 Chapter 8. Kernel Management APIs

https://traitlets.readthedocs.io/en/stable/config.html#the-main-concepts

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

class jupyter_kernel_mgmt.discovery.KernelSpecProvider(search_path=None)
Offers kernel types from installed kernelspec directories.

find_kernels()
Return an iterator of (kernel_name, kernel_info_dict) tuples.

async launch(name, cwd=None, launch_params=None)
Launch a kernel, returns a 2-tuple of (connection_info, kernel_manager).

name will be one of the kernel names produced by find_kernels() and known to this provider.

cwd (optional) a string that specifies the path to the current directory of the notebook as conveyed by the
client. Its interpretation is provider-specific.

launch_params (optional) a dictionary consisting of the launch parameters used to launch the kernel. Its
interpretation is provider-specific.

This method launches and manages the kernel in an asynchronous (non-blocking) manner.

class jupyter_kernel_mgmt.discovery.IPykernelProvider
Offers a kernel type using the Python interpreter it’s running in. This checks if ipykernel is importable first. If
import fails, it doesn’t offer a kernel type.

find_kernels()
Return an iterator of (kernel_name, kernel_info_dict) tuples.

async launch(name, cwd=None, launch_params=None)
Launch a kernel, returns a 2-tuple of (connection_info, kernel_manager).

name will be one of the kernel names produced by find_kernels() and known to this provider.

cwd (optional) a string that specifies the path to the current directory of the notebook as conveyed by the
client. Its interpretation is provider-specific.

launch_params (optional) a dictionary consisting of the launch parameters used to launch the kernel. Its
interpretation is provider-specific.

This method launches and manages the kernel in an asynchronous (non-blocking) manner.

8.4 Kernel Launchers

The kernel provider is responsible for launching the kernel and returning the connection information and ker-
nel manager instance. For those providers choosing to use Popen as their means of launching their ker-
nels, jupyter_kernel_mgmt provides SubprocessKernelLauncher for the ‘tcp’ transport and and
SubprocessIPCKernelLauncher for the ‘ipc’ transport (using filesystem sockets).

class jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher(kernel_cmd,
cwd, ex-
tra_env=None,
ip=None,
launch_params=None)

Run a kernel asynchronously in a subprocess.

Parameters

• kernel_cmd (list of str) – The Popen command template to launch the kernel

• cwd (str) – The working directory to launch the kernel in

• extra_env (dict, optional) – Dictionary of environment variables to update the
existing environment

8.4. Kernel Launchers 23

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

• ip (str, optional) – Set the kernel’s IP address [default localhost]. If the IP address
is something other than localhost, then Consoles on other machines will be able to connect
to the Kernel, so be careful!

build_popen_kwargs(connection_file)
Build a dictionary of arguments to pass to Popen

files_to_cleanup(connection_file, connection_info)
Find files to be cleaned up after this kernel is finished.

This method is mostly to be overridden for cleaning up IPC sockets.

format_kernel_cmd(connection_file, kernel_resource_dir=None)
Replace templated args (e.g. {connection_file})

async launch()
The main method to launch a kernel.

Returns (connection_info, kernel_manager)

make_connection_file()
Generates a JSON config file, including the selection of random ports.

make_ports()
Randomly select available ports for each of port_names

class jupyter_kernel_mgmt.subproc.launcher.SubprocessIPCKernelLauncher(kernel_cmd,
cwd,
ex-
tra_env=None,
ip=None,
launch_params=None)

Start a kernel on this machine to listen on IPC (filesystem) sockets

files_to_cleanup(connection_file, connection_info)
Find files to be cleaned up after this kernel is finished.

This method is mostly to be overridden for cleaning up IPC sockets.

make_ports()
Randomly select available ports for each of port_names

8.5 Kernel Manager

The Kernel Manager API is used to manage a kernel’s lifecycle. It does not provide communication support between
the application and the kernel itself. Any third-parties implementing their own KernelProvider would likely
implement their own KernelManager derived from the KernelManagerABC abstract base class. However,
those providers using Popen to launch local kernels can use KernelManager directly.

class jupyter_kernel_mgmt.managerabc.KernelManagerABC
Abstract base class from which all KernelManager classes are derived.

kernel_id
The id associated with the kernel.

abstract async is_alive()
Check whether the kernel is currently alive (e.g. the process exists)

abstract async wait()
Wait for the kernel process to exit.

24 Chapter 8. Kernel Management APIs

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

Returns True if the kernel is still alive after waiting, False if it exited (like is_alive()).

abstract async signal(signum)
Send a signal to the kernel.

abstract async interrupt()
Interrupt the kernel by sending it a signal or similar event

Kernels can request to get interrupts as messages rather than signals. The manager is not expected to
handle this. KernelClient.interrupt() should send an interrupt_request or call this method as
appropriate.

abstract async kill()
Forcibly terminate the kernel.

This method may be used to dispose of a kernel that won’t shut down. Working kernels should usually be
shut down by sending shutdown_request from a client and giving it some time to clean up.

async cleanup()
Clean up any resources, such as files created by the manager.

class jupyter_kernel_mgmt.subproc.manager.KernelManager(popen,
files_to_cleanup=None,
win_interrupt_evt=None)

Manages a single kernel in a subprocess on this host.

Parameters

• popen (subprocess.Popen or asyncio.subprocess.Process) – The pro-
cess with the started kernel. Windows will use Popen (by default), while non-Windows will
use asyncio’s Process.

• files_to_cleanup (list of paths, optional) – Files to be cleaned up after
terminating this kernel.

• win_interrupt_evt – On Windows, a handle to be used to interrupt the kernel. Not
used on other platforms.

async cleanup()
Clean up resources when the kernel is shut down

async interrupt()
Interrupts the kernel by sending it a signal.

Unlike signal_kernel, this operation is well supported on all platforms.

Kernels may ask for interrupts to be delivered by a message rather than a signal. This method does not
handle that. Use KernelClient.interrupt to send a message or a signal as appropriate.

async is_alive()
Is the kernel process still running?

async kill()
Kill the running kernel.

async signal(signum)
Sends a signal to the process group of the kernel (this usually includes the kernel and any subprocesses
spawned by the kernel).

Note that since only SIGTERM is supported on Windows, this function is only useful on Unix systems.

async wait()
Wait for kernel to terminate

8.5. Kernel Manager 25

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

8.6 Kernel Client

The Kernel Client API is how an application communicates with a previously launched kernel using the Jupyter mes-
sage protocol (FIXME jupyter_protocol). For applications based on IO loops, Jupyter Kernel Management provides
IOLoopKernelClient.

class jupyter_kernel_mgmt.client_base.KernelClient(connection_info, manager=None,
use_heartbeat=True)

Communicates with a single kernel on any host via zmq channels.

The messages that can be sent are exposed as methods of the client (KernelClient.execute, complete, his-
tory, etc.). These methods only send the message, they don’t wait for a reply. To get results, use e.g.
get_shell_msg() to fetch messages from the shell channel.

close()
Close sockets of this client.

After calling this, the client can no longer be used.

comm_info(target_name=None, _header=None)
Request comm info

Returns

Return type The msg_id of the message sent

complete(code, cursor_pos=None, _header=None)
Tab complete text in the kernel’s namespace.

Parameters

• code (str) – The context in which completion is requested. Can be anything between a
variable name and an entire cell.

• cursor_pos (int, optional) – The position of the cursor in the block of code
where the completion was requested. Default: len(code)

Returns

Return type The msg_id of the message sent.

execute(code, silent=False, store_history=True, user_expressions=None, allow_stdin=None,
stop_on_error=True, _header=None)

Execute code in the kernel.

Parameters

• code (str) – A string of code in the kernel’s language.

• silent (bool, optional (default False)) – If set, the kernel will execute
the code as quietly possible, and will force store_history to be False.

• store_history (bool, optional (default True)) – If set, the kernel will
store command history. This is forced to be False if silent is True.

• user_expressions (dict, optional) – A dict mapping names to expressions to
be evaluated in the user’s dict. The expression values are returned as strings formatted
using repr().

• allow_stdin (bool, optional (default self.allow_stdin)) – Flag
for whether the kernel can send stdin requests to frontends.

Some frontends (e.g. the Notebook) do not support stdin requests. If raw_input is called
from code executed from such a frontend, a StdinNotImplementedError will be raised.

26 Chapter 8. Kernel Management APIs

https://jupyter-client.readthedocs.io/en/stable/messaging.html
https://jupyter-client.readthedocs.io/en/stable/messaging.html

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

• stop_on_error (bool, optional (default True)) – Flag whether to abort
the execution queue, if an exception is encountered.

Returns

Return type The msg_id of the message sent.

history(raw=True, output=False, hist_access_type='range', _header=None, **kwargs)
Get entries from the kernel’s history list.

Parameters

• raw (bool) – If True, return the raw input.

• output (bool) – If True, then return the output as well.

• hist_access_type (str) –

‘range’ (fill in session, start and stop params), ‘tail’ (fill in n) or ‘search’ (fill in pat-
tern param).

• session (int) – For a range request, the session from which to get lines. Session
numbers are positive integers; negative ones count back from the current session.

• start (int) – The first line number of a history range.

• stop (int) – The final (excluded) line number of a history range.

• n (int) – The number of lines of history to get for a tail request.

• pattern (str) – The glob-syntax pattern for a search request.

Returns

Return type The ID of the message sent.

input(string, parent=None)
Send a string of raw input to the kernel.

This should only be called in response to the kernel sending an input_request message on the stdin
channel.

inspect(code, cursor_pos=None, detail_level=0, _header=None)
Get metadata information about an object in the kernel’s namespace.

It is up to the kernel to determine the appropriate object to inspect.

Parameters

• code (str) – The context in which info is requested. Can be anything between a variable
name and an entire cell.

• cursor_pos (int, optional) – The position of the cursor in the block of code
where the info was requested. Default: len(code)

• detail_level (int, optional) – The level of detail for the introspection (0-2)

Returns

Return type The msg_id of the message sent.

interrupt(_header=None)
Send an interrupt message/signal to the kernel

is_complete(code, _header=None)
Ask the kernel whether some code is complete and ready to execute.

8.6. Kernel Client 27

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

kernel_info(_header=None)
Request kernel info

Returns

Return type The msg_id of the message sent

property owned_kernel
True if this client ‘owns’ the kernel, i.e. started it.

shutdown(restart=False, _header=None)
Request an immediate kernel shutdown.

Upon receipt of the (empty) reply, client code can safely assume that the kernel has shut down and it’s safe
to forcefully terminate it if it’s still alive.

The kernel will send the reply via a function registered with Python’s atexit module, ensuring it’s truly
done as the kernel is done with all normal operation.

Returns

Return type The msg_id of the message sent

class jupyter_kernel_mgmt.client.IOLoopKernelClient(connection_info, man-
ager=None)

Uses a zmq/tornado IOLoop to handle received messages and fire callbacks.

Use ClientInThread to run this in a separate thread alongside your application.

add_handler(handler, channels)
Add a callback for received messages on one or more channels.

Parameters

• handler (function) – Will be called for each message received with the message
dictionary as a single argument.

• channels (set or str) – Channel names: ‘shell’, ‘iopub’, ‘stdin’ or ‘control’

close()
Close the client’s sockets & streams.

This does not close the IOLoop.

comm_info(target_name=None, _header=None)
Request comm info

Returns

Return type The msg_id of the message sent

complete(code, cursor_pos=None, _header=None)
Tab complete text in the kernel’s namespace.

Parameters

• code (str) – The context in which completion is requested. Can be anything between a
variable name and an entire cell.

• cursor_pos (int, optional) – The position of the cursor in the block of code
where the completion was requested. Default: len(code)

Returns

Return type The msg_id of the message sent.

28 Chapter 8. Kernel Management APIs

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

execute(code, silent=False, store_history=True, user_expressions=None, allow_stdin=None,
stop_on_error=True, interrupt_timeout=None, idle_timeout=None, raise_on_no_idle=False,
_header=None)

Execute code in the kernel.

Parameters

• code (str) – A string of code in the kernel’s language.

• silent (bool, optional (default False)) – If set, the kernel will execute
the code as quietly possible, and will force store_history to be False.

• store_history (bool, optional (default True)) – If set, the kernel will
store command history. This is forced to be False if silent is True.

• user_expressions (dict, optional) – A dict mapping names to expressions to
be evaluated in the user’s dict. The expression values are returned as strings formatted
using repr().

• allow_stdin (bool, optional (default self.allow_stdin)) – Flag
for whether the kernel can send stdin requests to frontends.

Some frontends (e.g. the Notebook) do not support stdin requests. If raw_input is called
from code executed from such a frontend, a StdinNotImplementedError will be raised.

• stop_on_error (bool, optional (default True)) – Flag whether to abort
the execution queue, if an exception is encountered.

Returns

Return type The msg_id of the message sent.

history(raw=True, output=False, hist_access_type='range', _header=None, **kwargs)
Get entries from the kernel’s history list.

Parameters

• raw (bool) – If True, return the raw input.

• output (bool) – If True, then return the output as well.

• hist_access_type (str) –

‘range’ (fill in session, start and stop params), ‘tail’ (fill in n) or ‘search’ (fill in pat-
tern param).

• session (int) – For a range request, the session from which to get lines. Session
numbers are positive integers; negative ones count back from the current session.

• start (int) – The first line number of a history range.

• stop (int) – The final (excluded) line number of a history range.

• n (int) – The number of lines of history to get for a tail request.

• pattern (str) – The glob-syntax pattern for a search request.

Returns

Return type The ID of the message sent.

input(string, parent=None)
Send a string of raw input to the kernel.

This should only be called in response to the kernel sending an input_request message on the stdin
channel.

8.6. Kernel Client 29

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

inspect(code, cursor_pos=None, detail_level=0, _header=None)
Get metadata information about an object in the kernel’s namespace.

It is up to the kernel to determine the appropriate object to inspect.

Parameters

• code (str) – The context in which info is requested. Can be anything between a variable
name and an entire cell.

• cursor_pos (int, optional) – The position of the cursor in the block of code
where the info was requested. Default: len(code)

• detail_level (int, optional) – The level of detail for the introspection (0-2)

Returns

Return type The msg_id of the message sent.

async interrupt(_header=None)
Send an interrupt message/signal to the kernel

is_complete(code, _header=None)
Ask the kernel whether some code is complete and ready to execute.

kernel_info(_header=None)
Request kernel info

Returns

Return type The msg_id of the message sent

property owned_kernel
True if this client ‘owns’ the kernel, i.e. started it.

remove_handler(handler, channels=None)
Remove a previously registered callback.

shutdown(restart=False, _header=None)
Request an immediate kernel shutdown.

Upon receipt of the (empty) reply, client code can safely assume that the kernel has shut down and it’s safe
to forcefully terminate it if it’s still alive.

The kernel will send the reply via a function registered with Python’s atexit module, ensuring it’s truly
done as the kernel is done with all normal operation.

Returns

Return type The msg_id of the message sent

shutdown_or_terminate(timeout=5.0)
Ask the kernel to shut down, and terminate it if it takes too long.

The kernel will be given up to timeout seconds to respond to the shutdown message, then the same timeout
to terminate.

30 Chapter 8. Kernel Management APIs

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

8.7 Kernel Restarter

The Kernel Restarter API is used by applications wishing to perform automatic kernel restarts upon detection of the
kernel’s unexpected termination. jupyter_kernel_mgmt provides KernelRestarterBase and provides an
implementation of that class for Tornado-based applications via TornadoKernelRestarter.

class jupyter_kernel_mgmt.restarter.KernelRestarterBase(kernel_manager,
kernel_type, ker-
nel_finder=None, **kw)

Monitor and autorestart a kernel.

debug
Whether to include every poll event in debugging output. Has to be set explicitly, because there will be a
lot of output.

time_to_dead
Kernel heartbeat interval in seconds.

restart_limit
The number of consecutive autorestarts before the kernel is presumed dead.

start()
Start monitoring the kernel.

stop()
Stop monitoring.

add_callback(f, event)
Register a callback to fire on a particular event.

Possible values for event: ‘died’: the monitored kernel has died

‘restarted’: a restart has been attempted (this does not necessarily mean that the new kernel is usable).

‘failed’: restart_limit attempts have failed in quick succession, and the restarter is giving up.

remove_callback(f, event)
Unregister a callback from a particular event

Possible values for event are the same as in add_callback().

async do_restart(auto=False)
Called when the kernel has died

async poll()

class jupyter_kernel_mgmt.restarter.TornadoKernelRestarter(kernel_manager,
kernel_type, ker-
nel_finder=None,
**kw)

Monitor a kernel using the tornado ioloop.

add_callback(f, event)
Register a callback to fire on a particular event.

Possible values for event: ‘died’: the monitored kernel has died

‘restarted’: a restart has been attempted (this does not necessarily mean that the new kernel is usable).

‘failed’: restart_limit attempts have failed in quick succession, and the restarter is giving up.

add_traits(**traits)
Dynamically add trait attributes to the HasTraits instance.

8.7. Kernel Restarter 31

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

classmethod class_config_rst_doc()
Generate rST documentation for this class’ config options.

Excludes traits defined on parent classes.

classmethod class_config_section()
Get the config class config section

classmethod class_get_help(inst=None)
Get the help string for this class in ReST format.

If inst is given, it’s current trait values will be used in place of class defaults.

classmethod class_get_trait_help(trait, inst=None)
Get the help string for a single trait.

If inst is given, it’s current trait values will be used in place of the class default.

classmethod class_own_trait_events(name)
Get a dict of all event handlers defined on this class, not a parent.

Works like event_handlers, except for excluding traits from parents.

classmethod class_own_traits(**metadata)
Get a dict of all the traitlets defined on this class, not a parent.

Works like class_traits, except for excluding traits from parents.

classmethod class_print_help(inst=None)
Get the help string for a single trait and print it.

classmethod class_trait_names(**metadata)
Get a list of all the names of this class’ traits.

This method is just like the trait_names() method, but is unbound.

classmethod class_traits(**metadata)
Get a dict of all the traits of this class. The dictionary is keyed on the name and the values are the
TraitType objects.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s instances are
holding.

The metadata kwargs allow functions to be passed in which filter traits based on metadata values. The
functions should take a single value as an argument and return a boolean. If any function returns False,
then the trait is not included in the output. If a metadata key doesn’t exist, None will be passed to the
function.

property cross_validation_lock
A contextmanager for running a block with our cross validation lock set to True.

At the end of the block, the lock’s value is restored to its value prior to entering the block.

async do_restart(auto=False)
Called when the kernel has died

has_trait(name)
Returns True if the object has a trait with the specified name.

hold_trait_notifications()
Context manager for bundling trait change notifications and cross validation.

32 Chapter 8. Kernel Management APIs

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

Use this when doing multiple trait assignments (init, config), to avoid race conditions in trait notifiers
requesting other trait values. All trait notifications will fire after all values have been assigned.

observe(handler, names=traitlets.All, type='change')
Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Parameters

• handler (callable) – A callable that is called when a trait changes. Its signature
should be handler(change), where change is a dictionary. The change dictionary
at least holds a ‘type’ key. * type: the type of notification. Other keys may be passed
depending on the value of ‘type’. In the case where type is ‘change’, we also have the
following keys: * owner : the HasTraits instance * old : the old value of the modified
trait attribute * new : the new value of the modified trait attribute * name : the name of
the modified trait attribute.

• names (list, str, All) – If names is All, the handler will apply to all traits. If a
list of str, handler will apply to all names in the list. If a str, the handler will apply just to
that name.

• type (str, All (default: 'change')) – The type of notification to filter by.
If equal to All, then all notifications are passed to the observe handler.

on_trait_change(handler=None, name=None, remove=False)
DEPRECATED: Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits subclass with the naming convention
‘_[traitname]_changed’. Thus, to create static handler for the trait ‘a’, create the method _a_changed(self,
name, old, new) (fewer arguments can be used, see below).

If remove is True and handler is not specified, all change handlers for the specified name are uninstalled.

Parameters

• handler (callable, None) – A callable that is called when a trait changes. Its
signature can be handler(), handler(name), handler(name, new), handler(name, old, new),
or handler(name, old, new, self).

• name (list, str, None) – If None, the handler will apply to all traits. If a list of str,
handler will apply to all names in the list. If a str, the handler will apply just to that name.

• remove (bool) – If False (the default), then install the handler. If True then unintall it.

remove_callback(f, event)
Unregister a callback from a particular event

Possible values for event are the same as in add_callback().

classmethod section_names()
return section names as a list

set_trait(name, value)
Forcibly sets trait attribute, including read-only attributes.

setup_instance(*args, **kwargs)
This is called before self.__init__ is called.

start()
Start the polling of the kernel.

8.7. Kernel Restarter 33

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

stop()
Stop the kernel polling.

classmethod trait_events(name=None)
Get a dict of all the event handlers of this class.

Parameters name (str (default: None)) – The name of a trait of this class. If name
is None then all the event handlers of this class will be returned instead.

Returns

Return type The event handlers associated with a trait name, or all event handlers.

trait_metadata(traitname, key, default=None)
Get metadata values for trait by key.

trait_names(**metadata)
Get a list of all the names of this class’ traits.

traits(**metadata)
Get a dict of all the traits of this class. The dictionary is keyed on the name and the values are the
TraitType objects.

The TraitTypes returned don’t know anything about the values that the various HasTrait’s instances are
holding.

The metadata kwargs allow functions to be passed in which filter traits based on metadata values. The
functions should take a single value as an argument and return a boolean. If any function returns False,
then the trait is not included in the output. If a metadata key doesn’t exist, None will be passed to the
function.

unobserve(handler, names=traitlets.All, type='change')
Remove a trait change handler.

This is used to unregister handlers to trait change notifications.

Parameters

• handler (callable) – The callable called when a trait attribute changes.

• names (list, str, All (default: All)) – The names of the traits for which
the specified handler should be uninstalled. If names is All, the specified handler is unin-
stalled from the list of notifiers corresponding to all changes.

• type (str or All (default: 'change')) – The type of notification to filter
by. If All, the specified handler is uninstalled from the list of notifiers corresponding to all
types.

unobserve_all(name=traitlets.All)
Remove trait change handlers of any type for the specified name. If name is not specified, removes all trait
notifiers.

update_config(config)
Update config and load the new values

34 Chapter 8. Kernel Management APIs

CHAPTER

NINE

CHANGES IN JUPYTER KERNEL MGMT

9.1 0.5.1

• Enable support for python 3.5

9.2 0.5.0

• Tolerate missing status on kernel-info-reply

• Add some missing dependencies and min versions

• Force pin of pyzmq for travis builds, increase timeout

• Close kernel client in start_new_kernel tests

• Give kernel providers opportunity to load configuration

• Add support for kernel launch parameters

• Add support for native coroutines (async def)

• Significant documentation updates

• Fix operations on Windows

• Rework high-level APIs

9.3 0.4.0

• Remove unused import

• Make test fail because of idle-handling bug

• Fix watching for idle after execution

• Allow multiple providers to use kernelspec-based configurations

• Allow multiple providers to use kernelspec-based configurations

35

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

9.4 0.3.0

• Expose kernel_info_dict on blocking kernel client

• Translate tornado TimeoutError to base Python TimeoutError for blocking client

• Normalise contents of kernel info dicts

• Remove configurable kernel spec class and whitelist

• Remove deprecated method to install IPython kernel spec

• Remove special kernelspec handling for IPython

• Get rid of LoggingConfigurable base class

• Allow passing a different search path for KernelSpecProvider

• Catch unparseable kernelspecs when finding all

• Rework restarter events

• Don’t try to relaunch a dead kernel with the same ports

• Rework message handlers API

• Use tornado event loop to dispatch restart callbacks

• Allow restarter to be used for manual restarts

• Support Python 3.4, missing JSONDecodeError

9.5 0.2.0

• Add kernel_info_dict attribute

• Don’t use prerelease versions of test dependencies

• Return message even if status=’error’

• Remove ErrorInKernel exception

9.6 0.1.1

• Initial experimental implementation.

Note: Because the code in this repository originated from jupyter_client you may also want to look at its changelog
history.

36 Chapter 9. Changes in Jupyter Kernel Mgmt

https://jupyter-client.readthedocs.io/en/latest/changelog.html
https://jupyter-client.readthedocs.io/en/latest/changelog.html

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

37

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

38 Chapter 10. Indices and tables

PYTHON MODULE INDEX

j
jupyter_kernel_mgmt, 21

39

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

40 Python Module Index

INDEX

A
add_callback() (jupyter_kernel_mgmt.restarter.KernelRestarterBase

method), 31
add_callback() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 31
add_handler() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 28
add_traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 31

B
build_popen_kwargs()

(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher
method), 24

C
class_config_rst_doc()

(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 31

class_config_section()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_get_help() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_get_trait_help()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_own_trait_events()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_own_traits()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_print_help()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_trait_names()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

class_traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
class method), 32

cleanup() (jupyter_kernel_mgmt.managerabc.KernelManagerABC
method), 25

cleanup() (jupyter_kernel_mgmt.subproc.manager.KernelManager
method), 25

close() (jupyter_kernel_mgmt.client.IOLoopKernelClient
method), 28

close() (jupyter_kernel_mgmt.client_base.KernelClient
method), 26

comm_info() (jupyter_kernel_mgmt.client.IOLoopKernelClient
method), 28

comm_info() (jupyter_kernel_mgmt.client_base.KernelClient
method), 26

complete() (jupyter_kernel_mgmt.client.IOLoopKernelClient
method), 28

complete() (jupyter_kernel_mgmt.client_base.KernelClient
method), 26

cross_validation_lock()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
property), 32

D
debug (jupyter_kernel_mgmt.restarter.KernelRestarterBase

attribute), 31
do_restart() (jupyter_kernel_mgmt.restarter.KernelRestarterBase

method), 31
do_restart() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 32

E
environment variable

JUPYTER_PATH, 4
execute() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 28
execute() (jupyter_kernel_mgmt.client_base.KernelClient

method), 26

F
files_to_cleanup()

(jupyter_kernel_mgmt.subproc.launcher.SubprocessIPCKernelLauncher
method), 24

files_to_cleanup()
(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher

41

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

method), 24
find_kernels() (jupyter_kernel_mgmt.discovery.KernelFinder

method), 22
find_kernels() (jupyter_kernel_mgmt.discovery.KernelProviderBase

method), 22
find_kernels() (MyKernelProvider method), 17
format_kernel_cmd()

(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher
method), 24

from_entrypoints()
(jupyter_kernel_mgmt.discovery.KernelFinder
class method), 22

H
has_trait() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 32
history() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 29
history() (jupyter_kernel_mgmt.client_base.KernelClient

method), 27
hold_trait_notifications()

(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
method), 32

I
id (MyKernelProvider attribute), 17
input() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 29
input() (jupyter_kernel_mgmt.client_base.KernelClient

method), 27
inspect() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 29
inspect() (jupyter_kernel_mgmt.client_base.KernelClient

method), 27
interrupt() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 30
interrupt() (jupyter_kernel_mgmt.client_base.KernelClient

method), 27
interrupt() (jupyter_kernel_mgmt.managerabc.KernelManagerABC

method), 25
interrupt() (jupyter_kernel_mgmt.subproc.manager.KernelManager

method), 25
IOLoopKernelClient (class in

jupyter_kernel_mgmt.client), 28
IPykernelProvider (class in

jupyter_kernel_mgmt.discovery), 23
is_alive() (jupyter_kernel_mgmt.managerabc.KernelManagerABC

method), 24
is_alive() (jupyter_kernel_mgmt.subproc.manager.KernelManager

method), 25
is_complete() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 30
is_complete() (jupyter_kernel_mgmt.client_base.KernelClient

method), 27

J
jupyter_kernel_mgmt (module), 21
JUPYTER_PATH, 4

K
kernel_id (jupyter_kernel_mgmt.managerabc.KernelManagerABC

attribute), 24
kernel_info() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 30
kernel_info() (jupyter_kernel_mgmt.client_base.KernelClient

method), 27
KernelClient (class in

jupyter_kernel_mgmt.client_base), 26
KernelFinder (class in

jupyter_kernel_mgmt.discovery), 22
KernelManager (class in

jupyter_kernel_mgmt.subproc.manager),
25

KernelManagerABC (class in
jupyter_kernel_mgmt.managerabc), 24

KernelProviderBase (class in
jupyter_kernel_mgmt.discovery), 22

KernelRestarterBase (class in
jupyter_kernel_mgmt.restarter), 31

KernelSpecProvider (class in
jupyter_kernel_mgmt.discovery), 22

kill() (jupyter_kernel_mgmt.managerabc.KernelManagerABC
method), 25

kill() (jupyter_kernel_mgmt.subproc.manager.KernelManager
method), 25

L
launch() (jupyter_kernel_mgmt.discovery.KernelFinder

method), 22
launch() (jupyter_kernel_mgmt.discovery.KernelProviderBase

method), 22
launch() (jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher

method), 24
launch() (MyKernelProvider method), 17
load_config() (jupyter_kernel_mgmt.discovery.KernelProviderBase

method), 22

M
make_connection_file()

(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher
method), 24

make_ports() (jupyter_kernel_mgmt.subproc.launcher.SubprocessIPCKernelLauncher
method), 24

make_ports() (jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher
method), 24

MyKernelProvider (built-in class), 17

42 Index

jupyter_kernel_mgmt Documentation, Release 0.6.0.dev0

O
observe() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 33
on_trait_change()

(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
method), 33

owned_kernel() (jupyter_kernel_mgmt.client.IOLoopKernelClient
property), 30

owned_kernel() (jupyter_kernel_mgmt.client_base.KernelClient
property), 28

P
poll() (jupyter_kernel_mgmt.restarter.KernelRestarterBase

method), 31

R
remove_callback()

(jupyter_kernel_mgmt.restarter.KernelRestarterBase
method), 31

remove_callback()
(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
method), 33

remove_handler() (jupyter_kernel_mgmt.client.IOLoopKernelClient
method), 30

restart_limit (jupyter_kernel_mgmt.restarter.KernelRestarterBase
attribute), 31

run_kernel_async (class in jupyter_kernel_mgmt),
21

run_kernel_blocking() (in module
jupyter_kernel_mgmt), 21

S
section_names() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

class method), 33
set_trait() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 33
setup_instance() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 33
shutdown() (jupyter_kernel_mgmt.client.IOLoopKernelClient

method), 30
shutdown() (jupyter_kernel_mgmt.client_base.KernelClient

method), 28
shutdown_or_terminate()

(jupyter_kernel_mgmt.client.IOLoopKernelClient
method), 30

signal() (jupyter_kernel_mgmt.managerabc.KernelManagerABC
method), 25

signal() (jupyter_kernel_mgmt.subproc.manager.KernelManager
method), 25

start() (jupyter_kernel_mgmt.restarter.KernelRestarterBase
method), 31

start() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
method), 33

start_kernel_async() (in module
jupyter_kernel_mgmt), 21

start_kernel_blocking() (in module
jupyter_kernel_mgmt), 21

stop() (jupyter_kernel_mgmt.restarter.KernelRestarterBase
method), 31

stop() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter
method), 33

SubprocessIPCKernelLauncher (class in
jupyter_kernel_mgmt.subproc.launcher), 24

SubprocessKernelLauncher (class in
jupyter_kernel_mgmt.subproc.launcher),
23

T
time_to_dead (jupyter_kernel_mgmt.restarter.KernelRestarterBase

attribute), 31
TornadoKernelRestarter (class in

jupyter_kernel_mgmt.restarter), 31
trait_events() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

class method), 34
trait_metadata() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 34
trait_names() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 34
traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 34

U
unobserve() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 34
unobserve_all() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 34
update_config() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter

method), 34

W
wait() (jupyter_kernel_mgmt.managerabc.KernelManagerABC

method), 24
wait() (jupyter_kernel_mgmt.subproc.manager.KernelManager

method), 25

Index 43

	Kernel Finder
	Finding kernels
	Launching kernels

	Kernel Manager
	Kernel Client
	Kernel Restarter
	Standalone Usage
	Use with Jupyter Server
	Kernel Providers
	Creating a kernel provider
	Finding kernel types
	Included kernel providers
	Included kernel launchers
	Glossary

	Kernel Management APIs
	High Level API
	Kernel Finder
	Kernel Provider
	Kernel Launchers
	Kernel Manager
	Kernel Client
	Kernel Restarter

	Changes in Jupyter Kernel Mgmt
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.1

	Indices and tables
	Python Module Index
	Index

